If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x=-2x^2+188
We move all terms to the left:
x-(-2x^2+188)=0
We get rid of parentheses
2x^2+x-188=0
a = 2; b = 1; c = -188;
Δ = b2-4ac
Δ = 12-4·2·(-188)
Δ = 1505
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{1505}}{2*2}=\frac{-1-\sqrt{1505}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{1505}}{2*2}=\frac{-1+\sqrt{1505}}{4} $
| 10=2/(1-r) | | .7(x+3)+9=5(x-2)-3x | | 13q=-15+12q | | 3x-1=-2x-7 | | 4.5x+2.3=6.8 | | Y=33+9x+x^2 | | 8^x+1=6 | | Y=33+9x+x^ | | 1/2(29r)=7.75 | | -2.5f-19.9-17.17=19.33+2.2f | | 1/2a-9=-12 | | 3w+11=-9w-13 | | 3x-4/7x+28=0 | | 99,96=6.8x | | 3x+1=5x=19 | | 40=4c | | k-8=-22 | | 7x-8=81 | | g=–11 | | 14g-15g=-15 | | 6.3b+11.44=3.7b | | 5z-5z+2z+1=19 | | 1/(v-1)=6 | | -17x+14x+-x+-12=16 | | 4x-10+1x+26+1x+14=180 | | x+2+3=351 | | 5/6x=1/2x+1/2 | | 12−3n=4 | | 2(2x+61)=97-7x | | 5x+25=14^2 | | 105+12m=261 | | -10.3t-17.6=-7.5t+19.64 |